Subsurface Geology of Oil and Gas Fields

______ Introduction **Chapter 1 Drilling Geology Chapter 2 Evaluation Oil, Gas and Water Formation Chapter 3 Stratigraphic Classification and Stratigraphic Correlation Chapter 4 Subsurface Structure Research Chapter 5 Formation Pressure and Formation Temperature Chapter 6 Reserves Calculation**

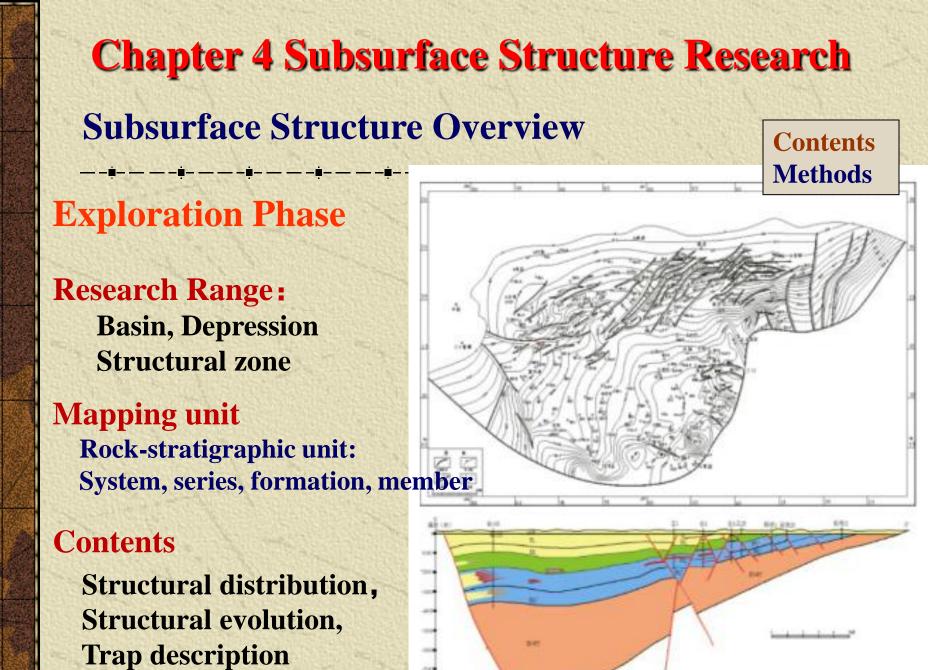
Chapter 4 Subsurface Structure Research

Subsurface Structure Research Exploration arrangement Reserves calculation Development design Dynamic analysis

Research Contents Section 1 Subsurface Structure Overview Section 2 Fault Research Section 3 Geology Section Mapping Section 4 Structure Map of Oil and Gas Fields Section 5 Palaeostructure Research Method

Chapter 4 Subsurface Structure Research

The basic features of subsurface structure

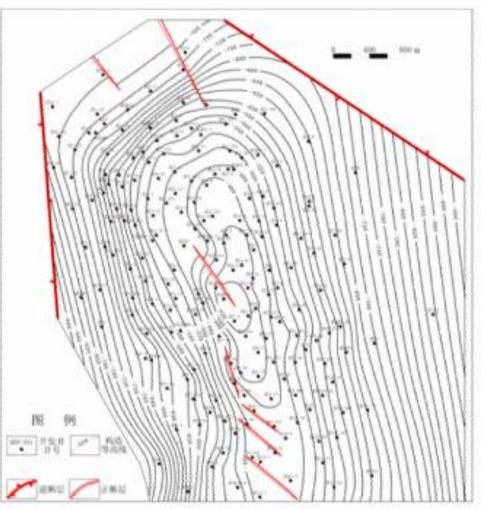


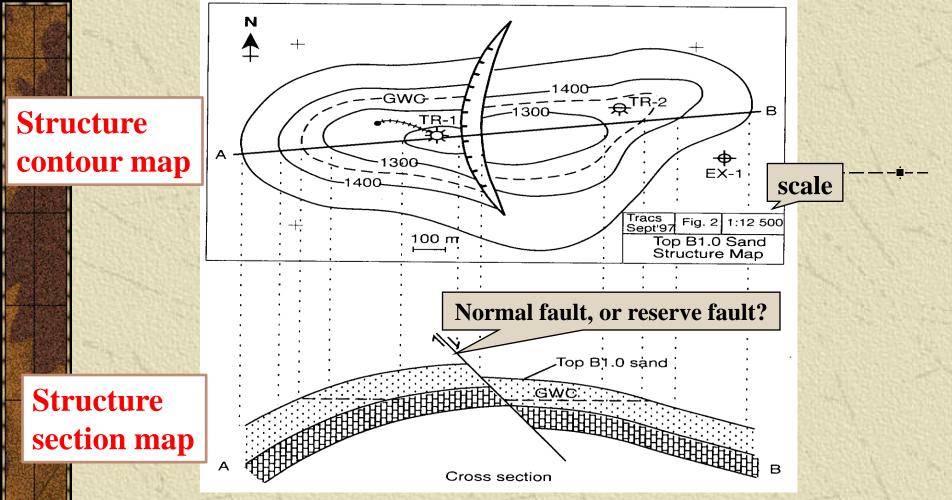
Fold: bedding fluctuation

Fault: bedding offset

Contents

Methods


Large range, thick ---- seismic data


Chapter 4 Subsurface Structure Research Section 1 Subsurface Structure Overview

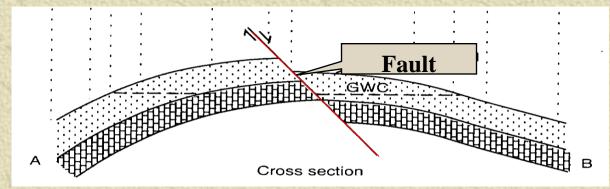
Development Phase Research Range : oil-gas field

Mapping unit oil beds unit---reservoir group, sand group, single sand bed

Contents Trap fine description

Structure map

Structure contour map displays the shape and extend of the hydrocarbon accumulation, indicates the OWC and display the location of wells and fault.


Structure section map shows structure feature, fault and anticline.

Geology Profile Mapping

Geology profile of oil and gas field is the vertical section along some directions

Cross profile, cross section:Vertical to construction axial direction Profile section, elevation section:

-----Parallel to the construct axis

Geology Profile Mapping

Cross profile :

C Cross profile Longitudinal diagram

To display the shape and extent of a hydrocarbon accumulation To indicate the dip and strike of the structure.

To display the location of faults, fold and the fluid contacts

Geologic profiles illustrate in two dimensions the relation between stratigraphy, structure, and topography. The detail included on such profiles depends on the amount of data available for plotting, scale of the profile, and purpose of its construction.

Correlation of stratigraphic units within rock sequences is the basis of these cross sections. The stratigraphic data plotted are obtained from geophysical information and from drill holes.

The quality of the profiles depends directly on the accuracy of data with which the geologist has available, and on his ability to interpret and use these data.

I. Data

Table 4 Locations of wells

Distances between 16 wells along a west-east line are given in table.

Well No.	Well Spacing	Well No.	Well Spacing
WCII 140.	m		m
1-2	641	9-10	244
2-3	381	10-11	427
3-4	305	11-12	229
4-5	641	12-13	336
5-6	351	13-14	625
6-7	412	14-15	342
7-8	189	15-16	464
8-9	153		

Well No.1 is the most westerly

I. Da	ta	Lable 5 Summary description of stratigraphic units		
Younge	est L	Coarse-grained, gray sandstones, unconsolidated conglomerates, and gravels		
	K	Red, silty to sandy shale		
	J	Cross-bedded, arkosic sandstone and conglomerate		
6	Ι	Gray-black, thin-bedded shale		
	Η	Tan to brown dolomite with chert streaks		
	G	Red mudstone with discontinuous layers of evaporite		
	F	Very dense, gray limestone to highly coralline limestone		
	Ε	Dark gray, calcareous shale and coralline limestone		
	D	Medium-grained, calcareous sandstone to arenaceous, eoralline and algal limestone (locally well developed)		
	С	Black, cherty, shale with streaks of white bentonite		
	B	Fine- to medium-crystalline, gray fossiliferous limestone		
	A	Fine-grained, gray, quartzitic sandstone		
Oldest				

I. Data

Table 6.—Description of lithology penetrated in wells

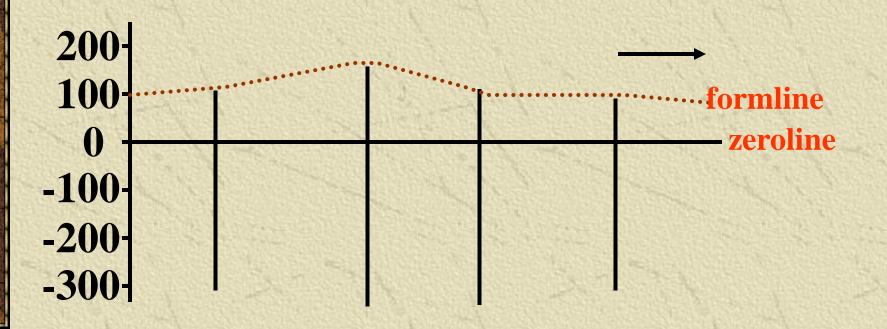
	Well No. 1 (Elev. 85m; T.D.1945m)		
0-290	Poorly sorted, very coarse-grained, friable, gray sandstone		
-412	Massive, red siltstone and sandy shales; some thin streaks of fine-grained, pink sandstone		
-519	Coarse-grained, feldspathic sandstone; thin calcareous streaks		
-686	Thin-bedded, lack highly fissile shale		
-770	Dark brown, fine-crystalline dolomite with chert		
-1235			
-1312	Very dense, gray limestone		
-1510			
-1754			
-1824	Black shale with streaks of bentonite; some chert		
-1945	Gray-white, fine-crystalline, vuggy limestone with few fossils		

L	Coarse-grained, gray sandstones,	ALC: NO	
	unconsolidated conglomerates, and	SH0	Well No. 1 (Elev. 85m; T.D.1945m)
	gravels	0-290	Poorly sorted, very coarse-grained, friable,
K	Red, silty to sandy shale	L	gray sandstone
J	Cross-bedded, arkosic sandstone and	-412	Massive, red siltstone and sandy shales;
	conglomerate	-414	· · · · · · · · · · · · · · · · · · ·
Ι	Gray-black, thin-bedded shale	K	some thin streaks of fine-grained, pink sandstone
Η	Tan to brown dolomite with chert streaks	-519	Coarse-grained, feldspathic sandstone; thin
G	Red mudstone with discontinuous	22.00	calcareous streaks
	layers of evaporite		
F	Very dense, gray limestone to highly	-686	Thin-bedded, lack highly fissile shale
	coralline limestone	-770	Dark brown, fine-crystalline dolomite with
E	Dark gray, calcareous shale and		chert
	coralline limestone	-1235	Red mudstone with some anhydrite
D	Medium-grained, calcareous sandstone	-1312	Very dense, gray limestone
	to arenaceous, eoralline and algal		
	limestone (locally well developed)	-1510	Dark gray, calcareous, hard shale
		-1754	Gray, calcareous, hard, brittle sandstone
С	Black, cherty, shale with streaks of		
	white bentonite	-1824	Black shale with streaks of bentonite; some
B	Fine- to medium-crystalline, gray		chert
	fossiliferous limestone	-1945	Gray-white, fine-crystalline, vuggy
A	Fine-grained, gray, quartzitic		limestone with few fossils
	sandstone		

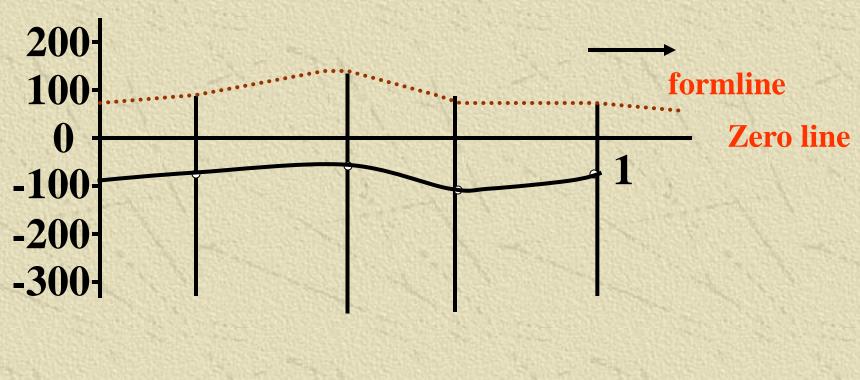
L	Coarse-grained, gray sandstones,			Well No. 2 (Elev. 520'; T.D. 6750')
	unconsolidated conglomerates, and		0-390	Loosely consolidated conglomerates and
	gravels		L	sandstones; considerable caving in hole
K	Red, silty to sandy shale	1	-488	Silty red shale with occasional thin streaks
J	Cross-bedded, arkosic sandstone and	53	K	of sandstone
J			-583	Coarse-grained, cross-bedded sandstone
_	conglomerate		-639	Black shale; thin-bedded; slightly silty in
Ι	Gray-black, thin-bedded shale			lower part
Η	Tan to brown dolomite with chert streaks		-720	Fine-crystalline, light tan dolomite
				containing streaks and lenses of white chert
G	Red mudstone with discontinuous	100	-1195	Interbedded red mudstone and thin
	layers of evaporite			anhydrite layers
F	Very dense, gray limestone to highly		-1204	Massive, coarse-crystalline anhydrite
	coralline limestone	12	-1272	Dense to fine-crystalline, gray-white
E	Dark gray, calcareous shale and	1		limestone Gray, calcareous, hard, brittle
	coralline limestone		-1268	sandstone
D	Medium-grained, calcareous sandstone			Dark gray, highly calcareous, hard, brittle
	to arenaceous, eoralline and algal	1995		shale
	limestone (locally well developed)		-1631	Hard, gray, calcareous sandstone; few
				streaks of thin, sandy limestone
C	Black, cherty, shale with streaks of	1000	-1956	Medium-crystalline, gray-white limestone;
	white bentonite	100		few poorly preserved fosses; lost
B	Fine- to medium-crystalline, gray			circulation at 5365
	fossiliferous limestone	1111		feet
Α	Fine-grained, gray, quartzitic		-2058	Very hard, fine-grained sandstone;
	sandstone			penetration 2-feet-per-hour with rock bit

Geology Profile Mapping

1. Plotting selected section line according to scale Draw a sea-level base line Mark the profile direction


200-100-0 -100--200--300-

Zero line
sea-level base line


Geologic Section Mapping

2. Wells are marked on the section line
Locate the position of each well on a scale of 1:20000.
Plotting formline according to well head elevation
Well head elevation: The distance between ground level to sea level

Geologic Section Mapping

3. Mark results of correlation and fault point on well profile To connect the same strata boundary with smooth line and fault line on the section.

Geologic Section Mapping

4. Legend and Table

Mapping unit	
Draftsman	
Mapping time	
Authorization	

5. Description

- 1. Draw a sea-level base line.
- 2. Locate the position of each well on a scale of 1:20000.
- 3. On the same scale, plot the ground elevations above the sea-level datum line; from these ground-elevation points plot the total depth of each well.
- 4. In table 6 identify the lithologic units as penetrated in each well according to the "key" lithologic description given in table 5 and place the formation letter (L,K,J, etc.) to the left of their respective tabular depth intervals
- 5. The positions of the identified stratigraphic units determined in step 2 are then plotted on the well lines according to depths.
- 6. Having identified and plotted all lithologic units in each well, establish correlations between the wells and develop the cross section.
- 7. The final drawing should include a formation legend, graphic scale, and also well numbers, and arrows indicating relative direction of fault movement.

IV. Comprehensive Questions

1. Indicate the most favorable positions for accumulation of oil and gas on the cross section.

2. List the various conditions under which a formation may be repeated in the same well.

- 3. Under what conditions may a formation exhibit anomalous thickness?
- 4. List the major shows while drilling through the fault.
- **5.** Discuss the relative ages of the faults in the cross section.
- 6. From the cross section is it possible to demonstrate divergence of a crestal and an axial surface?
- 7. Summarize the geological feature of the cross profile briefly.