Exercise 3

3. The following data are available for a linear-reservoir system:

 $Bo{=}1.25~bbl/STB$, $Bw{=}1.02~bbl/STB$, h=20~ft , A=26400~ft , Porosity = 25% Injection rate $i_w=900~bbl/day$, distance between producer and injector $L{=}600~ft$, $u_o{=}2.0~cp$, $u_w=1.0~cp$, Dip angle = 0° , $S_{wi}{=}20\%$, $S_{or}=20\%$ Seek for:

- (1)Plot the water saturation profile after 60, 120, and 240 days.
- (2)Calculate time to breakthrough?
- (3) Calculate cumulative water injected at breakthrough?
- (4)Calculate total pore volumes of water injected at breakthrough?

Sw	kro/krw
0.25	30.23
0.30	17.00
0.35	9.56
0.40	5.38
0.45	3.02
0.50	1.70
0.55	0.96
0.60	0.54
0.65	0.30
0.70	0.17
0.75	0.10

$$\frac{df_{w}}{dS_{w}} = \frac{\left(\frac{\mu_{w}}{\mu_{o}}\right)bae^{-bS_{w}}}{\left[1 + \left(\frac{\mu_{w}}{\mu_{o}}\right)ae^{-bS_{w}}\right]^{2}} = \frac{\left(\frac{\mu_{w}}{\mu_{o}}\right)b\left(\frac{K_{ro}}{K_{rw}}\right)}{\left[1 + \left(\frac{\mu_{w}}{\mu_{o}}\right)\left(\frac{K_{ro}}{K_{rw}}\right)\right]^{2}}$$

Note:

The frontal advance equation:

$$(x)_{s_w} = \frac{q_t t}{\phi A} \left(\frac{\partial f_w}{\partial S_w} \right)_{Sw}$$

In field units, the above equation can be expressed as:

$$(x)_{S_w} = \left(\frac{5.615i_w t}{\phi A}\right) \left(\frac{df_w}{dS_w}\right)_{S_w}$$