Exercise 2

- 2. The linear system in exercise-1 is under consideration for a waterflooding project, water-injection rate i_w =1000 bbl/day, u_0 = 10 cp.
- (1) Calculate the fractional flow for the reservoir dip angles of 10°, 20°, and 30°,

assuming (a) updip displacement and (b) downdip displacement.

(2) What conclusions can you draw?

S_{w}	k _{ro}	$k_{\rm rw}$	k _{ro} /k _{rw}	Fw, updip			F _w , downdip		
				10°	20°	30°	10°	20°	30°
0.24	0.95	0							
0.3	0.89	0.01							
0.4	0.74	0.04							
0.5	0.45	0.09							
0.6	0.19	0.17							
0.65	0.12	0.22							
0.7	0.06	0.28							
0.75	0.03	0.36							
0.78	0	0.41							

(In field units, the fractional flow equation can be expressed as:

$$f_{w} = \frac{1 + \left(\frac{0.001127k_{o}A}{\mu_{o}q_{t}}\right) \left[\frac{\partial p_{c}}{\partial x} - 0.433\Delta\rho\sin(\alpha)\right]}{1 + \frac{k_{o}}{k_{w}}\frac{\mu_{w}}{\mu_{o}}}$$

where $f_w = \text{fraction of water (water cut), bbl/bbl}$

 k_o = effective permeability of oil, md

k_w = effective permeability of water, md

 $\Delta \rho$ = water-oil density differences, g/cm³

k_w = effective permeability of water, md

 $q_t = total flow rate, bbl/day$

 μ_0 = oil viscosity, cp

 $\mu_{\rm w}$ = water viscosity, cp

 $A = cross-sectional area, ft^2$

Noting that the relative permeability ratios $k_{ro}/k_{rw} = k_o/k_w$ and, for two-phase flow, the total flow rate q_t are essentially equal to the water-injection rate, i.e., $i_w = q_t$