

National University of Singapore

Strategic Technology Management for Future Growth

Speaker: Professor LAU Hon-Chung

Professor LAU Hon Chung, PhD, PE

Education

- PhD, Chemical Engineering, Princeton University (1982)
- MA, Chemical Engineering, Princeton University (1979)
- BSc, Chemical Engineering, California Institute of Technology (1977)

Positions Held

- Professor, Civil & Environmental Engineering, NUS (2016-)
 Senior Scientific Advisor, Institute of Chemical and Engineering Sciences, A*STAR (2017-)
- Manager, Arrow Beijing Study Center, Beijing (2012-2016)
- Chief Production Technologist, Shell International, Houston (2006-2012)
- Team Leader, Integrated Reservoir Modeling, Shell International, Houston (2001-2006)
- Staff Production Technologist, Brunei Shell Petroleum (1997-2001)
- Staff Research Production Engineer, Shell Development Company, Houston (1990-1997)
- Exchange Scientist, Royal Dutch Shell Laboratory, The Netherlands (1989-1990)
- Research Reservoir Engineer, Shell Development, Houston (1981-1989)

Understanding the Competitive Landscape in S. E. Asia

OUTLINE

- Energy outlook to 2040
- Technology implications
- Technology providers
- The Singaporean model
- Assignment
- Q&A

Energy Outlook

BP Energy Outlook 2018
https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html

Energy Outlook

How is this true in S. E. Asia?

Energy Outlook up to 2040

- Between 2014 to 2040, global energy demand will rise by 25%.
- Fossil fuels (coal, oil, gas) will supply
 78% of world need needs through 2040.
- Oil will remain the world's primary fuel meeting about 1/3 of the energy demand, including 95% of transportation energy.
- Natural gas will be #2 fuel, as 40% of growth in energy demand will be met by natural gas.
- There will be strong growth in nuclear and renewables.

Global energy mix shifts to lower-carbon fuels
Percent of primary energy (%)

Source: The Outlook for Energy: A View to 2040, ExxonMobil (2016, 2018)

Energy Outlook up to 2040

Liquids - Demand

Liquids supply highlights regional diversity

Liquids (Oil)

- Growth in supply will be from technology-driven tight oil, NGL, oil sands and deepwater.
- Asia Pacific's net import of oil will rise by over 50% by 2040, as domestic production declines but demand grows.

Energy Outlook up to 2040

Gas

- Global demand for natural gas will rise by 50% between 2014-2040.
- By 2040, Asia-Pacific will import 40%+ of gas from other regions.

Common trends in S.E Asia oilfields

- Brown fields
- Rapid decline rate
- Need for enhanced oil recovery
- High CO₂ content gas field
- Complicated geology
- Aging infrastructure

How true is this for China?

Technology Implications

- Technology has the highest potential and greatest uncertainties in meeting future energy demands.
- Growth in oil supply will be in technology-driven tight oil, NGL, oil sands and deepwater.
- Growth in gas supply will be in technology-driven unconventionals such as tight gas, shale gas, coalbed methane, and others.
- In Asia Pacific, arresting production decline in aging fields will need technologies like Enhanced Oil Recovery (EOR), well, reservoir, facility management (WRFM) and other breakthroughs.

Who are the technology providers for the upstream petroleum industry?

- Universities
- National laboratories
- National oil companies
- International oil companies
- Oil service companies
- Chemical companies
- Other vendors
- Other industries

How do we incentivize technology providers to invest in our country?

- Energy and tax policies
- IP protection
- Access to domestic market
- Access to regional market
- Human resources
- Skilled professionals
- Legal and political system

The Singapore Model of Attracting Foreign Investment

- Established legal system of IP protection
- Easy access to regional market
- Skilled laborers and technical professionals
- Economic Development Board to attract foreign investment
- National laboratories as a bridge between academia and industry
- Huge R&D budget for innovation and research

The Singapore Model

Government lab

IP protection

Access to Asia market

Talent pipeline

Source: National Research Foundation

Government R&D funding

SWOT Analysis

Questions & Answers

